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During the past few years there has been 
considerable interest in constructing mathemati- 
cal models for the study of the educational pro- 
cess. These models, according to their subjects, 
can be classified into three categories (See 
Wurtele, 1967). The first category may be called 
demographic models. They focus primarily on the 
educational system or some of its components, 
such as the flow of students, teacher - student 
ratio, etc. The second category are the econo- 
metric models which treat education as one of the 
several interrelated economic activities; educa- 
tional institutions are viewed as producers of 
outputs that are employed by the different sec- 
tors of society. The third category of models 
deals with the learning outcomes of individual 
students, or group of students. The socio- 
psychological aspects of educational process are 
strongly emphasized. 

This paper is concerned with the first cate- 
gory of educational models. It attempts to exam- 
ine student progression in an educational system 
from the demographic point of view. So, the sub- 
ject of educational process is treated in the 
aggregate, and the interdependencies of the edu- 
cational system with other sectors of society is 
analytically disregarded. 

A General Demographic Model 

The subject of educational process has long 
been of great interest to demographers. And the 
demographic analysis of educational process has 
been a great contribution to the educational 
planners, who must continually estimate the size 
of future student enrollments at different levels 
of the educational structure. Examples are found 
in the work of the Census Bureau, which in the 
past years has provided a continuous projection 
of school enrollments (Census Bureau, 1963; 
Siegel, 1967). A systematic exposition of educa- 
tional demography using the Census Bureau's sta- 
tistics is shown in the publication of Folger and 
Nam (1967). 

However, demographers are often blamed for 
their failure to make an accurate educational 
projection. It is sometimes complained that 
demographers have relied too much on the tech- 
niques of trend extrapolation. Besides, the 
reliability of school enrollment analysis seems 
to be dependent on the birth -death projection of 
the total population which itself may be inaccu- 
rate. 

Let us begin with an examination of the gen- 
eral demographic methodology of projecting school 
population. It can be best summarized in the 
following equation (Stone, 1966): 
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(1) s n q 

where s is the total student enrollment; n is the 
population vector of each age group; q is, also a 
vector which gives the age -specific enrollment 
rates. 

One way to implement the population vector 
is to follow Leslie's matrix approach, as Stone 
suggests. The Census Bureau's projection tech- 
nique, though slightly different, nevertheless, 
is more or less based on trend extrapolation. 
Similarly, the enrollment rates are generally 
computed as a linear projection of the trend in 
observed fall enrollment rates in the past years. 

One of the main limitations of such model, 
as Correa points out (Correa, 1967:34), is that 
the projected educational enrollments closely 
reflect the differences in the population struc- 
ture and they are inappropriate to be used for 
temporal or spatial comparisons. There is anoth- 
er important limitation of such a model. It is 

that the model fails to give sufficient attention 
to the underlying dynamics of the educational 
process. This weakness is similar to the econo- 
metricians' construct of labor force function, 
which yields very limited knowledge of how the 
size of the labor'force is determined by popula- 
tion structure. 

Structure of Educational System 

In order to reach a more realistic projec- 
tion of student population, we propose to begin 
with an examination of the underlying mechanism 
of educational process. The major part of this 
paper attempts to assess the underlying dynamics 
of cohort student progression. Let us first con- 
sider the following Lexis diagram which repre- 
sentq the progression of a student cohort (Fig. 
1).1/ 

The example shows that the student cohort 
first enters the educational system in 1954. 
With the increment of years, its size changes 
from the first grade to the last grade. Symboli- 
cally the size of the cohort may be denoted as 
N(x,t), where x = 1, 2, . 12 and t = 1954, 

55, ... It is obvious that the size tends to 
decrease over time in a population which is 
closed against immigration. If we take the ini- 

tial size of the cohort as a basis, it can be 
shown (Fig. 2) that the rlecline of this cohort 
size is very much similar to a negative exponen- 
tial distribution. It can be generalized as hav- 
ing the form of N(x) = N(1) e-er, where k is a 
constant term. For different cohorts, there will 
be different constant terms. It is possible to 
test empirically the variation of the terms for 

1/ An extensive application of Lexis diagram to 
demographic analysis can be found in Pressat 
(1961). 
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cohorts at different points in time; so some 
interesting results may be shown. 

Nevertheless, examining only the behavior of 
the constant terms can be misleading. Obviously 
the curve is not a smooth one. A more realistic 
approach is to analyze a student, cohort's "reten- 
tion rate" (Duncan, 1965:129).) Symbolically it 
is N(x +l, t +l) /N(x,t). Fig. 2 indicates that the 
rate does not show any tendency of monotonous 
decline. On the contrary, it increases from the 
first grade to the sixth grade. Only after the 
eighth grade does the rate begin to decline 
monotonously. This observation leads to the con- 
clusion that the decline of a student cohort is 
not strictly comparable to the survival curve in 
the general human population. 

This suggests that a student population of a 
given grade is not only affected by those sepa- 
rating forces such as mortality and dropout. 
Many other factors can also contribute to deter- 
mine the cohort size. Probably the most impor- 
tant factor is the effect of failure (or repeat- 
ers) at each level of an educational system. The 
effect is analogous to that of a rolling snow - 
ball; the repeaters tend to increase the rate of 
retention as shown in Fig. 2. Some other less 
important factors can be immigration and the re- 
enrollment of dropouts. 

Normally these two forces work in the oppo- 
site direction: mortality and dropout on the one 
hand, failure and new entry on the other hand. 
If the separating force is predominant, the size 
of a student cohort tends to decrease, and, 
hence, the retention rate will be less than 
unity. However, the effects of failure and new 
entry can be so strong that the decreasing ten- 
dency is cancelled out, which is obviously the 
case in Fig. 2. The combined effect of mortality 
and dropout is called the "separation factor" 
(Stockwell and Nam, 1963). 

An Educational Model from the Markov Process 

Several simplifications must be made before 
we can construct a model which will take account 
of these underlying dynamics. We shall limit 
ourselves to the analysis of a closed population, 
an assumption which is not uncommon in demo- 
graphic analysis. Furthermore, following a model 
of the Norwegian educational system (Thonstad, 
1967), we assume that dropout is a one -time pro- 
cess; even though some dropouts re- enroll in 
schools in the later years, there are reasons to 
believe that the number may be too small to 
affect the total size of a school population. In 
other words, it is assumed that dropout is an 
absorbing state. Once an individual has left the 
educational system, he will not return. 

Here the concept of "retention rate" is used 
following the examples of Duncan (1965) and 
Stockwell and Nam (1963). However, the concept 
is used differently in the Office of Education's 
publications. 
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Based on these assumptions, it follows that 
the progression of a student cohort has four 
alternatives, namely, failure, progress, death 
and dropout. The flow distribution of the cohort 
is a vector, and so the total educational system 
can be contrived as an input -output matrix, shown 
in Table 1.j.! The figures in the matrix are 
purely illustrative. The first three rows repre- 
sent the educational system up to the third 
grade; their row sums show the number of students 
in a given grade; their elements give the flow 
distribution of those students in that grade. 
The last three rows represent graduation (g), 
mortality (m) and dropout (d), respectively. 
Their row sums are zero, as they are assumed to 
be absorbing states. 

TABLE 1 

AN EXAMPLE OF STUDENT PROGRESSION 

t2 
tl 

1st 

grade 
2nd 

grade 
3rd 

grade 
Gradu- 
ation 

Mor- 
tality 

Drop - 
out Sum 

1st grade 7S 415 0 0 5 5 
2nd grade 0 45 391 0 5 9 450 
3rd grade 0 0 20 360 4 16 400 
Graduation 0 0 0 0 0 0 
Mortality 0 0 0 0 0 0 0 
Dropout 0 0 0 0 0 0 0 

Sum 75 460 411 360 14 30 1350 

It is obvious that such an input - output 

matrix can be readily formulated into a transition 
matrix, shown as follows: 

1 2 3 g m d 
1 .15 .83 o .01 .01 

2 0 .10 .87 0 .01 .02 

3 o o .05 .90 .01 .04 

g 
m o O O 
d 0 0 0 0 0 0 

All elements in the matrix give the transitional 
probabilities from one state to another. Let us 

use A(i.j) to denote such a transitional matrix. 
If the matrix is treated as stationary, it is pos- 
sible to obtain the grade distribution of a stu- 
dent population at the successive years through an 
application of the elementary Markov process 
principle. It involves the use of the following 

equation: 

(2) 

where the grade distribution of students at time 
t +l is the result of multiplying the grade distri- 
bution of students at time t by the transitional 
matrix. 

a/ Treating educational system as an input- output 
matrix has been shown in OECD (1967), Ch. 2. 



This approach has been used extensively in 
many countries for the projection of future 
school enrollments. (See, for example, Zabrowski 
et al., 1967; Thonstad, 1967). It is not the 
purpose of our paper to repeat the same effort; 
however, we find that this approach can serve as 
a powerful analytical device. We are going to 
show that a model of student progression can be 
generated from this approach. 

Let us take the example of projecting the 
2nd grade school population at time t +1. Accord- 
ing to the Markov process principle expressed in 
Equation (2), it shall be: 

t +1 t t 
(3) N(2) = N(1) A(1,2) + N(2) A(2,2) 

where A(1 2) is the progression rate from the 1st 
grade tol the 2nd grade; A(2,2 is the failure 
rate for the 2nd grade students to remain in the 
same grade. What Equation (3) says is that the 
size of the student cohort at x +lth grade in the 
t +lth year is composed of those students of 
i,t) who can successfully progress to x +lth 
grade, and those students of N(x +l,t) who have to 
repeat in the same grade. 

To extend this line of thinking, let us use 
some symbols to denote the following concepts: 

N(x,t) = the student population at the xth 
grade in the tth year. 

m(x) = the mortality rate of the xth 
grade. 

d(x) = the dropout rate at the xth grade. 

r(x) = the failure rate at the xth grade 
when students are supposed to prog- 
ress to the xx +lth grade. 

p(x) = the progression rate for those who 
are in the xth grade and success- 
fully progress to the x+lth grade. 

Accordingly, a model can be generated from 
the aforementioned Markov- process consideration. 
The model, which is similar to that of equation 
(3), can be expressed as follows: 

(4) N(x+1, t+1) = N(x, t) p(x) + N(x+1, t) r(x+1) 

Besides, it is seen from the transitional matrix 
that: 

(5) p(x) = 1 - (m(x) + d(x) + r(x)) 

So the model in Equation (4) becomes: 

(6) N(x +l,t +l) = N(x,t) (1 - (m(x) + d(x) 

+ r(x))) + N(x +l,t) r(x+1) 

A Conversion Technique 

It appears that this model is not unique in 
the field of educational planning. As a matter 
of fact, most of the mathematical models of stu- 
dent progression are structurally more or less 
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similar. However, they are different in the 
methods of implementing their models. The main 
effort of this paper, therefore, lies on the fact 
that we attempt to incorporate some of the exist- 
ing demographic techniques into the implementa- 
tion of our model. 

Age is one of the basic demographic charac- 
teristics. It is "an invariant function of time 
and in this sense a fixed variable" (Duncan, 

1965:123). So demographers are more inclined to 
measure social phenomenon by using age as an unit 
of measurement. This is very prevalent in the 
literature of educational demography. However, 
it is generally understood that the educational 
system is a structure of grade hierarchy. Conse- 
quently, the accomplishments of educational 
demographers are often ignored and their works 
are scarcely incorporated in the educational 
model -building. For instance, the work of Stock- 
well and Nam is cited by some educational plan- 
ners (e.g., Correa, 1967; Dressel, 1967), andyet 
their ideas, particularly the measurement of 
dropout, have never been seriously employed. 
Here we attempt to show that some of the Stock- 
well and Nam's ideas can be readily applied to 
educational planning. 

Stockwell and Nam's measurement of dropout 
is very similar to the measurement of retirement 
in labor force analysis (Wolfbein, 1949). It is 

a by- product of constructing the table of school 
life. First of all, there is a concept called 
"stationary school population," which is the 
result of multiplying age- specific enrollment 
rates by the stationary (life table) population .Y 
Let us denote age as a, and the stationary school 
population at age a as N'(a). The ratio of the 
population at the successive ages, +1) 

shows the proportion of the life table population 
who remain in schools during a to a +l interval. 
The complement of this proportion gives the pro- 
pensity that the population at age a will not be 
enrolled in schools at age a +l. The causes of 
this "separation factor" appear to be mortality 
and dropout. So dropout rate can be obtained by 
operationally differentiating mortality rate from 
this separation factor. 

The mortality rate in a life table is simply 
the ratio of deaths to the life table population 
at a given age, where deaths are those in a popu- 
lation who do not survive from age a to e a +l. 
We shall denote the mortality rate as m(a). Then 
the propensity of dropout at age a is measured 
by 

4/ For those who are not familiar with tech- 
niques of life table construction, a classical 
reference is: Dublin, L. I., A. J. Lotka, and 
M. Spiegelman, Length of Life, Ronald Press Co., 
N. Y., 1949. 

The formula is slightly different from what 
Stockwell and Nam present. They have adjusted 
the denominator (population) by a half of deaths. 
To the present writer, the adjustment seems to be 
unnecessary; however, it is not the major concern 
of this paper to discuss such a technical differ- 
ence. 



(7) d(a) = 1 - N'(a+l)/N'(a) - m(a) 

Table 2 presents the rates of dropout and 
mortality by age for the United States school 
population in 1960. The mortality rate is con- 
structed by assuming that the risk of death in 
the school population is the same as the general 
population. This is perhaps not too far from the 
truth. The dropout rate is the residual of sub - 
strating the mortality rate from the total sepa- 
ration factor, as Equation (7) indicates. It is 

shown that the dropout rate increases from 2 per 
thousand at ages 10 -11 to 350 per thousand at 
ages 18 -19, and then it decreases, with fluctua- 
tions, to 120 per thousand at ages 29 -30 +. 

It appears that an empirical finding such as 
this is very consistent with our general knowl- 
edge of student's progression in an educational 
system. For instance, the peak of dropping out 
of school occurs around age 18, which is approxi- 
mately the time when students have completed high 

TABLE 2 

school. This observation raises a further 
inquiry, namely, to what extent the dropout rates 
in successive ages are corresponding to the drop- 
out rate in a successive grade? 

The question is also of practical impor- 
tance, as it is generally observed that in this 
country different statistical agencies tend to 
use different classifications in publishing their 
educational data: some are age- specific, whereas 
others are grade- specific. For this reason, it 
is analytically necessary to obtain a transforma- 
tion matrix which can show a. correspondence be- 
tween age and sex characteristics, so that a 
manipulation of the matrix will be able to con- 
vert any demographic characteristic from an age 
vector into a grade vector. 

Let us denote a school population at age a 
of grade x as S(a,x). The total school popula- 
tion of all grades for age a will be .S(a,x). 

It follows that there can be a matrix, T, with 
its elements as: 

MORTALITY AND DROPOUT AND SEPARATION RATES BY AGE 
UNITED STATES, 1960 

Age 
Population 

Life Table School 
Enroll. 
Ratio 

Separation Rate 
(per thousand) 

Total Death Dropout 

5 96,977 43,446 .448 0.7 0.7 

6 96,913 80,825 .834 0.5 0.5 - 

7 96,860 93,954 .97o 0.5 0.5 
8 96,815 94,685 .978 0.4 

9 96,776 94,744 .98o 0.4 0.4 

96,741 94,709 .979 2.4 o.4 2.0 

11 96,707 94,483 .977 0.4 2.0 

12 96,671 94,254 .975 6.6 0.4 6.2 

13 96,631 93,635 .969 17.0 0.5 16.5 

14 96,583 92,044 .953 26.8 0.6 26.2 

15 96,526 89,576 .928 69.6 0.7 68.9 

16 96,457 83,339 .864 124.6 0.8 123.7 

17 96,377 72,957 .757 333.5 0.9 332.6 
18 96,287 48,625 .505 351.2 1.0 350.1 

19 96,189 31,550 .328 281.3 1.1 280.2 

20 96,085 22,676 .236 208.5 1.1 207.4 

21 95,975 17,947 .187 237.7 1.2 236.5 

22 95,859 11,887 .124 210.7 1.3 209.4 

23 95,739 9,382 .098 154.1 1.3 152.9 
24 95,618 7,936 .083 85.5 1.3 84.2 

25 95,496 7,258 .076 93.3 1.3 92.o 

26 95,374 6,581 .069 102.6 1.3 101.3 

27 95,252 5,906 .062 98.0 1.3 96.6 

28 95,128 5,327 .056 108.3 1.3 107.0 

29 95,002 4,750 .050 121.2 1.4 119.8 

30+ 94,871 4,174 .044 

Source: United States Life Table, 1959-61, Public Health Service Publication 

No. 1252, Vol. 1, No. 1, Table 1, p. 8. 
United States Census of Population, 1960, Final Report PC(1) -1D, 

Table 165, p. 371. 
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(8) T(a,x) = 

It is possible, then, to treat the age - 
specific dropout rate, d(a), as a distribution 
vector, and postmultiply it to the matrix, 
T(a,x). The result gives a vector, d(x), which 
is the grade- specific dropout rate. 

T(ai,x1) T(a1, x2) T(al,x3) T(a1, xm) 

T(a2, xi) x2) x3) a2, xm) 

T(a3, xi) T(a3, x2) T(a3, x3) T(23, xm) 

T(an,xi) T(an,x2) T(an,x3) 

nxm 

d(ai) 

d(a2) 

d(a3) 

d(an) 

1 

d(xm) 

m x 

The same conversion technique can be em- 
ployed to transform the age- specific mortality 
rate into the grade- specific mortality rate. An 
application of this measurement to the United 
States school population in 1960 is presented in 
Table 3. It shows the transformation matrix as 
well as the grade -specific dropout rate and mor- 
tality rate. The dropout rate appears to be a 
monotonously increasing function. It is less 
than 1 per thousand at the first grade, yet it 
increases sharply to about 300 per thousand at 
the end of the high school ages. On the other 
hand, the mortality rate is relatively constant. 
It is roughly about 5 per thousand, with a slight 
increase only after the 8th grade. 

Measurement of Failure Rate 

In some countries where reliable repeater 
figures are available the implementation of an 
educational planning model will involve only a 
very simple manipulation. For example, Liu has 
used the repeater statistics in Colombia to 
demonstrate its utility in projecting future 
school population (Liu, 1966). In most of the 
countries, however, this kind of statistics is 
generally lacking. So the measurement of failure 
rate becomes a more or less arbitrary analytical 
exercise. Although in a study of Australian uni- 
versity enrollment, Geni has suggested that an 
arbitrary estimation of failure rate can also 
show an excellent projection of future school 
population (Geni, 1963), it seems more commmend- 
able to pursue a more rigorous statistical 
approach. 

In its DYNAMOD II model, the Office of Edu- 
cation has proposed a less arbitrary method of 
estimating failure rate. The technique is very 
much similar to a concept which demographers call 
"grade retardation" (See Folger and Nam, 1967: 
8 -11). For instance, in the estimate of the 1st 
grade's failure rate, it is taken as: 

(9) 
N(8, 1) + N(9, 1) 

41) N(5, 1) + N(6, 1) + N(7, 1) + N(8, + N(9, 1) 
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where N(a,x) is the school population at age a of 
grade x (Zabrowski and Rudman, 1967:3 -4). 

To what extent the measurement of retarda- 
tion can represent the true picture of failure 
(repeater) rate remains an unanswered question, 
as there seems to be no empirical finding to ver- 

ify such measurement so far. For this reason, we 
attempt to present another approach to measure 
the grade- specific failure rate. Although, it is 
not our contention that our measure is necessar- 
ily a more valid one, yet this alternative mea- 
surement may prove to be more consistent with the 
actual school- enrollment data. 

Our approach is to make use of the model 
which is presented in Equation (6). The model 
can be changed by taking into account the measure- 
ment of separation rate as proposed in the last 
section. The separation rate is, by Stockwell and 
Nam's definition, m(x) + d(x), or mortality rate 
plus dropout rate. If we have the estimates of 
the separation rate, there can be a continuation 
rate, such as c(x) = 1 - (m(x) + d(x)). Then 
Equation (6) can be expressed as follows: 

(lo) N(x +1, t+1) N(x, t) (c(x) - r(x)) + N(x+1, t) ,{x+l) 

It is rearranged and so it becomes: 

(11) N(x,t) r(x) - N(x +l,t) r(x +l) 

= N(x,t) c(x) - N(x +l,t +l) 

where the parameters r(x) and r(x +l) are on the 
left side of the equation. 

Let us assume that the mortality and dropout 
rates derived from the census data are applicable 
to the rest of the decade. By doing this, it is 
possible to implement the continuation rate c(x) 
for the equation. Furthermore, the size of the 
student population in each grade is given by the 
yearly school enrollment statistics, and so the 
implementation of N(x,t), N(x +l,t) or N(x +l,t +l) 
is also possible. Consequently, the only parame- 
ters left unsolved in Equation (11) are those 
failure rates, r(x) and r(x +l). 

It is obvious that Equation (11) is recursive 
with respect to every grade. Therefore, the stu- 
dent progression in each grade can be expressed in 
one of the equations; r(x) can be r(1), r(2) . . . 

If we substitute the coefficients N(x,t) by , 

N(x +l,t) by , and N(x,t) c(x) - N(x +l,t +l) 
by T , the following recursive equations are 
obtained: 

r(1) - r(2) = 

r(2) - r(3) = 

r(3) - 03 r(4) 3 
dur(11)- 011r(12)= 



TABLE 3 

DISTRIBUTION OF SCHOOL POPULATION BY AGE AND RATES OF 
AND MORTALITY FOR EACH GRADE 
UNITED STATES, 1960 

Age 

5 

II III IV 

.06 .01 - - 

6 .57 .06 .01 - 

7 .32 .54 .06 .01 
8 .04 .32 .52 .04 

9 .01 .06 .33 .51 
10 - .01 .06 .33 

.01 .07 
12 .01 .02 

13 - .01 

14 - - 

15 - - - 

16 - 

17 

18 

19 
20 
21 
22 

23 
24 
25+ 

Total 

d(x 
m(x 

Grade 
V VI VII VIII X XI XII 

1.0 1.0 1.0 1.0 

.0018 .0028 .0031 
.0005 .0005 .0004 .0004 

- 

- - 

.01 - 

.03 .01 - 

.51 .04 .01 

.33 .51 .04 

.08 .33 .51 

.02 .08 .33 

.01 .02 .07 

.01 .01 .03 

- .01 

1.0 1.0 

.0050 .0086 

.0004 .0004 

. 01 

.05 

. 54 

.26 

.08 

.03 

.01 

.01 

.01 

.06 

.53 

.3o 

.06 

. 03 
. 01 

.01 

.06 

.5o 

. 3o 

.07 

.02 

. 01 

.01 

.01 

.06 

.53 

.3o 

.06 

.02 

.01 

.01 

.01 

.05 

.48 

.24 

.06 

.03 

.02 

.01 

.01 

.01 

.07 

1.0 1.0 1.0 1.0 1.0 1.0 

.0170 .0344 .0800 .1126 .2000 .2984 

.0004 .0005 .0006 .0007 .0008 .0009 

Source: United States Census of Population, 1960, Final Report PC(1) -1D, Table 168, p. 377 
and computed from Table 1. 

Here the failure rates r(x), where x = 1,2,3 
.., are the only parameters. An application of 

these equations to the United States educational 
system will yield eleven equations. And there 
are twelve unknowns in these equations. The 
solution is possible only if one of the unknowns 
is given. 

It is arbitrarily assumed that the failure 
rate at the first grade is 0.15; to some extent 
such a proportion is based on the retardation 
concept, as DYNAMOD II suggests. With this 
assumption, the solution of the recursive equa- 
tions yields the values of grade- specific fail- 
ure rate, r(x), where x = 1, 2, 3 ... 11. 

For illustration purpose, we apply this 
technique to the United States public school 
enrollment data from 1961 to 1965. Table 4 shows 
the estimates of failure rate at each level of 
education. It is found that the failure rate is 
relatively high in the very low grades. It 
declines to reach the lowest point at the 4th or 
5th grade. Then it rises at the high school 
level. 

If the quality of the data does not change 
much from year to year, the failure probabilities 
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estimated through the above procedure will not 
show too much variation over time. Their sta- 
bility contributes greatly to the reliability of 
the projection of future school population. 

In a period from t1 to tn, the solution of 
the recursive equations give rt(x), where x = 
1,2, ... and r = 1,2 ... n. An examination of 
their mean and variance is able to indicate if a 
stable pattern exists. If this is the case, a 
trend can be fixed to these values; for instance, 
the trend can be a linear equation such as rt(x)= 
a + bt. The projected value of r(x) at to +l will 
not differ much from the average value if the 
variance is not too large. 

Table 4 also shows the mean, variance and 
the projected values of 1965 -66 failure rate. 
Considering the fact that the quality of the data 
are not very satisfactory, it is interesting to 
note that the results do not show any particu- 
larly great deviation from year to year. As a 
matter of fact, the failure rates under the 7th 
grade are very consistent. Their variances are 
negligible, and after the nth grade the variance 
increases only slightly. Consequently, the pro- 
jected failure rate, as expected, is found to be 
not much different from the average value of the 



TABLE 4 

FAILURE RATES BY GRADE IN THE UNITED STATES 
PUBLIC SCHOOLS, 1961 -1966 

Projected 
Grade 1961 -62 1962 -63 1963 -64 1964 -65 Average Variance 1965 -66 

1 -2 .1500 .1500 .1500 .1500 .1500 .0 

2 -3 .0996 .1022 .1037 .1003 .1014 .0 

3 -4 .0908 .0872 .0973 .0880 .0908 .o 

4 -5 .0856 .0792 .0927 .0810 .0845 .0 

5-6 .0896 .0773 .0990 .0801 .0865 .0001 
6 -7 .0892 .0749 .1038 .0739 .0855 .0001 
7 -8 .1177 .0990 .1312 .0980 .1115 .0002 

8 -9 .1203 .0930 .1397 .0999 .1133 .0003 

9 -10 .1770 .1424 .1854 .1569 .1653 .0003 
10 -11 .2029 .1504 .2054 .1793 .1843 .0006 

-12 .2036 .1706 .1921 .1694 .1840 .0002 

.1500 

. 1023 

.0912 

.0846 

.0848 

. 0812 

. 1048 

. 1064 

.1611 

.1806 

.1637 

Source: Computed from Digest of Educational Statistics, 1966, Table 28, 
"Enrollment by Grade in Full -time Public Elementary and Secondary 
Day Schools," p. 24. 

1961 -64 period. The deviation is especially low 
in the elementary schools. So the result seems 
to indicate that there is a stable pattern of 
failure rates from year to year. 

It appears that this technique of estimating 
the future failure rate may be acceptable. 
Therefore, the projected failure rate, along with 

the mortality and dropout rates, can be used in 
the projection of future school population. The 
projection procedure will be simply the applica- 
tion of the cohort approach as presented in 
Equation (6). 

Summary and Discussion 

This paper treats the size of student cohort 
as affected by three components, namely, the 
previous cohort's mortality, dropout, and fail- 
ure. Implicitly it assumes that the educational 
system is a closed population. So it follows 
that a model of student progression can be imple- 
mented using the renewal theories in demographic 
analysis. 

The major part of this paper attempts to 
assess the components of the model. It is in 
this aspect that this model differs from some 
other models of educational planning: We propose 
a conversion technique to obtain the grade - 
specific dropout and mortality rates, and we also 
suggest that the grade- specific failure rate can 
be estimated by solving the recursive equations. 
Through extending this type of analysis, it is 
possible to reach a more realistic projection of 
school population. 

Nevertheless, this paper has not attempted 
to elaborate in detail all the possible ap- 
proaches for reaching a successful projection of 
school population. For instance, one area which 
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has been overlooked is that of stratification of 
the population. Males and females, whites and 
nonwhites, have significantly different educa- 
tional parameters that change at different rates 
over time. Consequently, any effort to produce a 
useful model for other than very short -range pro- 
jections must take into account the population 
strata. 

We also conclude that a future effort shall 
be taken to limit the assumption that the educa- 
tional system is a closed population. Conceiv- 
ably this assumption may not be unrealistic in 
some countries where dropouts have very little 
chance of re- entering school; however, it is too 
strenuous to be applicable to the United States 
public school system. A study by the Bureau of 
Labor Statistics (1966) shows that there is a 
considerable number of dropouts who return to 
school. Therefore, we expect a future develop- 
ment of this paper shall be able to treat school 
population as an open system, and so migration 
and re- enrollment can be taken into account. 
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